5 research outputs found

    Automated execution and evaluation of simulation experiments in the context of backward simulation

    Get PDF
    Manufacturing processes are increasingly driven by new product requirements, innovation, and cost efficiency. As a result, researchers are exploring new techniques and tools to optimize operational production planning. One such tool is backward-oriented discrete event simulation (SimBack), which has shown great potential in this field. However, the process of conducting numerous simulation runs required for backward simulation is often time and resource-intensive, which limits its efficiency. To address this challenge, this paper presents an approach for automated execution and evaluation of simulation experiments in the context of a backwardoriented discrete event simulation approach for scheduling and capacity planning. The authors demonstrate their approach using a simulation model of the Semiconductor Manufacturing Testbed 2020 (SMT2020)

    A biased-randomized simheuristic for a hybrid flow shop with stochastic processing times in the semiconductor industry

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksCompared to other industries, production systems in semiconductor manufacturing have an above-average level of complexity. Developments in recent decades document increasing product diversity, smaller batch sizes, and a rapidly changing product range. At the same time, the interconnections between equipment groups increase due to rising automation, thus making production planning and control more difficult. This paper discusses a hybrid flow shop problem with realistic constraints, such as stochastic processing times and priority constraints. The primary goal of this paper is to find a solution set (permutation of jobs) that minimizes the production makespan. The proposed algorithm extends our previous work by combining biased-randomization techniques with a discrete-event simulation heuristic. This simulation-optimization approach allows us to efficiently model dependencies caused by batching and by the existence of different flow paths. As shown in a series of numerical experiments, our methodology can achieve promising results even when stochastic processing times are considered.Peer ReviewedPostprint (author's final draft

    A biased-randomized discrete-event algorithm for the hybrid flow shop problem with time dependencies and priority constraints

    Get PDF
    Based on a real-world application in the semiconductor industry, this article models and discusses a hybrid flow shop problem with time dependencies and priority constraints. The analyzed problem considers a production where a large number of heterogeneous jobs are processed by a number of machines. The route that each job has to follow depends upon its type, and, in addition, some machines require that a number of jobs are combined in batches before starting their processing. The hybrid flow model is also subject to a global priority rule and a “same setup” rule. The primary goal of this study was to find a solution set (permutation of jobs) that minimizes the production makespan. While simulation models are frequently employed to model these time-dependent flow shop systems, an optimization component is needed in order to generate high-quality solution sets. In this study, a novel algorithm is proposed to deal with the complexity of the underlying system. Our algorithm combines biased-randomization techniques with a discrete-event heuristic, which allows us to model dependencies caused by batching and different paths of jobs efficiently in a near-natural way. As shown in a series of numerical experiments, the proposed simulation-optimization algorithm can find solutions that significantly outperform those provided by employing state-of-the-art simulation software.Peer ReviewedPostprint (published version

    A Biased-Randomized Discrete-Event Algorithm for the Hybrid Flow Shop Problem with Time Dependencies and Priority Constraints

    No full text
    Based on a real-world application in the semiconductor industry, this article models and discusses a hybrid flow shop problem with time dependencies and priority constraints. The analyzed problem considers a production where a large number of heterogeneous jobs are processed by a number of machines. The route that each job has to follow depends upon its type, and, in addition, some machines require that a number of jobs are combined in batches before starting their processing. The hybrid flow model is also subject to a global priority rule and a “same setup” rule. The primary goal of this study was to find a solution set (permutation of jobs) that minimizes the production makespan. While simulation models are frequently employed to model these time-dependent flow shop systems, an optimization component is needed in order to generate high-quality solution sets. In this study, a novel algorithm is proposed to deal with the complexity of the underlying system. Our algorithm combines biased-randomization techniques with a discrete-event heuristic, which allows us to model dependencies caused by batching and different paths of jobs efficiently in a near-natural way. As shown in a series of numerical experiments, the proposed simulation-optimization algorithm can find solutions that significantly outperform those provided by employing state-of-the-art simulation software

    A Biased-Randomized Discrete-Event Algorithm for the Hybrid Flow Shop Problem with Time Dependencies and Priority Constraints

    No full text
    Based on a real-world application in the semiconductor industry, this article models and discusses a hybrid flow shop problem with time dependencies and priority constraints. The analyzed problem considers a production where a large number of heterogeneous jobs are processed by a number of machines. The route that each job has to follow depends upon its type, and, in addition, some machines require that a number of jobs are combined in batches before starting their processing. The hybrid flow model is also subject to a global priority rule and a “same setup” rule. The primary goal of this study was to find a solution set (permutation of jobs) that minimizes the production makespan. While simulation models are frequently employed to model these time-dependent flow shop systems, an optimization component is needed in order to generate high-quality solution sets. In this study, a novel algorithm is proposed to deal with the complexity of the underlying system. Our algorithm combines biased-randomization techniques with a discrete-event heuristic, which allows us to model dependencies caused by batching and different paths of jobs efficiently in a near-natural way. As shown in a series of numerical experiments, the proposed simulation-optimization algorithm can find solutions that significantly outperform those provided by employing state-of-the-art simulation software
    corecore